
\qquad

6.1 How Much Sodium?

- Sodium is an important dietary mineral that we eat in our food, primarily as sodium chloride (table salt).
- Sodium is involved in the regulation of body fluids, and eating too much of it can lead to high blood pressure.

6.1 How Much Sodium?

- The FDA recommends a person consume less than 2.4 g (2400 mg) of sodium per day.
- The mass of sodium that we eat is not the same as the mass of sodium chloride that we eat.
- How many grams of sodium chloride can we consume and still stay below the FDA recommendation for sodium?
- The chemical composition of sodium chloride is given in its formula, NaCl .
- There is one sodium ion to every chloride ion
- Since the masses of sodium and chlorine are different, the relationship between the mass of sodium and the mass of relationship between the mass of sodium and the mass of
sodium chloride is not clear from the chemical formula alone
- We need to calculate the amount of a constituent element in a given amount of a compound \qquad
© 2012 Pearson Educaion, nc.

The information in a chemical formula, along with atomic and formula masses, can be used to calculate the amount of a constituent element in a compound
How much iron is in a given amount of iron ore?
How much chlorine is in a given amount of a chlorofluorocarbon?

© 2012 Pearson Education, inc.

6.2 Counting by Weighing: Nails by the Pound

- Some hardware stores sell nails by the pound, which is easier than selling them by the nail. \qquad
- Customers often need hundreds of nails and counting them takes too long.
- A customer still needs to know the number of nails contained in a given weight of nails.
- This problem is similar to asking how many atoms are in a given mass of an element.
© 2012 Pearson Education, hnc.

The hardware store customer buys 2.60 lb of medium-sized nails, where a dozen of these nails weigh 0.150 lb .
How many nails did the customer buy? \qquad

- The solution map for the problem is:

- We convert from lb to number of nails:
\qquad
\qquad
\qquad
\qquad
2.60 lb nails $\times \frac{1 \text { doz nails }}{0.150 \mathrm{lb} \text { nails }} \times \frac{12 \text { nails }}{1 \text { doz nails }}=208$ nails
© 2012 Pearson Education, no.
\qquad
\qquad

6.2 Counting by Weighing: Nails by the Pound

- The conversion factor for the first part is the weight per dozen nails.
0.150 lb nails $=1 \mathrm{doz}$ nails
- The conversion factor for the second part is the number of nails in one dozen.

1 doz nails $=12$ nails
-2012 Pearson Educalion, nc.

6.3 Counting by Weighing: Atoms by the Gram

- With atoms, we must use their mass as a way to count them.
- Atoms are too small and too numerous to count individually.
- Even if you could see atoms and counted them 24 hours a day as long as you lived, you would barely begin to count the number of atoms in something as small as a grain of sand. \qquad
© 2012 Pearson Education, nc. \qquad

6.3 Counting by Weighing: Atoms by the Gram

- With nails, we used a dozen as a convenient number in our conversions.
- A dozen is too small to use with atoms.
- We need a larger number because atoms are so small.
- The chemist's "dozen" is called the mole (mol).

$$
1 \mathrm{~mol}=6.022 \times 10^{23}
$$

One mole of anything is 6.022×10^{23} units of that thing.
This number is called Avogadro's number, named after Amadeo Avogadro (1776-1856).

One mole of marbles corresponds to 6.022×10^{23} marbles.
One mole of sand grains corresponds to 6.022×10^{23} sand grains.

- 2012 Pearson Educalion, hnc.

One mole of atoms, ions, or molecules generally makes up objects of reasonable size.
 1 mol of copper (Cu)

Two large helium balloons contain approximately 1 mol atoms.
 of helium (He) atoms. \qquad
\qquad
\qquad
\qquad
© 2012 Pearson Education, nc.

The size of the mole is an

 empirically measured quantity.- The numerical value of the mole is defined as being equal to the number of atoms in exactly 12 g of pure carbon-12.
- This definition of the mole establishes a relationship between mass (grams of carbon) and number of atoms (Avogadro's number).
- This relationship allows us to count atoms by weighing them.

Converting moles to number of atoms: Convert 3.5 mol helium to the number of helium atoms.

aiven: 3.5 mol He
FIND: He atoms
find: He atoms
RELATONSHIPS USED $1 \mathrm{~mol} \mathrm{He}=6.022 \times 10^{23} \mathrm{He}$ atoms
solution map We draw a solution map showing the conversion from moles of He to He atoms.
solution
Beginning with 3.5 mol He , we use the conversion factor to get to He atoms.
$3.5 \mathrm{~mol} \mathrm{He} \times \frac{6.022 \times 10^{23} \mathrm{He} \text { atoms }}{1 \mathrm{~mol} \mathrm{He}}=2.1 \times 10^{24} \mathrm{He}$ atoms
1 mol He
© 2012 Pearson Eucation, nc.

Converting number of atoms to moles:

These pictures have the same number of nails. The weight of one dozen nails changes for different nails.

These pictures have the same number of atoms. The weight of one mole of atoms changes for different elements.

Q 2012 Pearson Education, Inc.

Molar Mass and Atomic Mass

- The atomic mass unit (amu) is defined as one-twelfth of the mass of a carbon-12 atom.
- The molar mass of any element-the mass of 1 mol of atoms of that element-is equal to the atomic mass of that element expressed in \qquad atomic mass units.
- One copper atom has an atomic mass of \qquad 63.55 amu .
- 1 mol of copper atoms has a mass of 63.55 \qquad g.
- The molar mass of copper is $63.55 \mathrm{~g} / \mathrm{mol}$. \qquad

The mass of 1 mol of atoms of an element is its molar mass.

- The mass of 1 mol of atoms changes for different elements:
32.07 g sulfur $=1 \mathrm{~mol}$ sulfur $=6.022 \times 10^{23} \mathrm{~S}$ atoms
12.01 g carbon $=1 \mathrm{~mol}$ carbon $=6.022 \times 10^{23} \mathrm{C}$ atoms
6.94 g lithium $=1 \mathrm{~mol}$ lithium $=6.022 \times 10^{23} \mathrm{Li}$ atoms
- The lighter the atom, the less mass in one mole of that atom. \qquad
\qquad

Converting between Grams and Moles

Calculate the number of moles of sulfur in 57.8 a of sulfur.
FIND: mols
solution map

$\frac{1 \mathrm{~mol} \mathrm{~S}}{32.07 \mathrm{~g} \mathrm{~S}}$
RELATIONSHIPS USED
$32.07 \mathrm{~g} \mathrm{~S}=1 \mathrm{~mol} \mathrm{~S}$ (molar mass of sulfur, from periodic table)
solution

$$
57.8 \mathrm{gS} \times \frac{1 \mathrm{~mol} \mathrm{~S}}{32.07 \mathrm{~g}}=1.80 \mathrm{~mol} \mathrm{~S}
$$

© 2012 Pearson Eucation, nc.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Converting between Moles and Grams:

Calculate the mass of aluminum (a) in 6.73 moles of GIVEN: 6.73 mol Al
fino: gal
solution map \qquad

$\frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}$
$\frac{26.9 \mathrm{gol} \mathrm{Al}}{}$ \qquad

RELATIONSHPPS USED \qquad
$26.98 \mathrm{~g} \mathrm{Al}=1 \mathrm{~mol} \mathrm{Al}$ (molar mass of Al from
periodic table)
solution \qquad
$6.73 \mathrm{mel} \mathrm{Al} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol}-\mathrm{Al}}=182 \mathrm{~g} \mathrm{Al}$
© 2012 Pearson Education, inc.

6.4 Counting Molecules by the Gram

- For elements, the molar mass is the mass of 1 mol of atoms of that element.
- For compounds, the molar mass is the mass of 1 mol of molecules or formula units of that compound.
- Ionic compounds do not contain individual molecules.
- We convert between the mass of a compound and moles of the compound, then we calculate the number of molecules (or formula units) from moles.

Converting Between Grams and Moles of a

 Compound Requires the Molar Mass- The molar mass of a compound in grams per mole is numerically equal to the formula mass of the compound in atomic mass units
- The formula mass for a compound is the sum of the atomic masses of all of The formoms in a chemical formula
Formula mass $=1($ Atomic mass of C$)+2($ Atomic mass of O$)$
$=1(12.01 \mathrm{amu})+2(16.00 \mathrm{amu})$
$=44.01 \mathrm{amu}$
The molar mass of CO_{2} is: \qquad
Molar mass $=44.01 \mathrm{~g} / \mathrm{mol}$
© 2012 Pearson Education, nc.

Converting Between Grams and Moles of a Compound: Calculate the mass in grams of 1.75 mol of water.

\qquad
\qquad
\qquad
$18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
$1 \mathrm{~mol}_{2} \mathrm{O}$ \qquad
\qquad
© 2012 Pearson Educaion, no.

Converting Between Grams and Moles of a
Compound: Calculate the mass in grams of 1.75 mol of water.
relationships used
$\mathrm{H}_{2} \mathrm{O}$ molar mass $=2($ Atomic mass H$)+1($ Atomic mass O$)$
$=2(1.01)+1(16.00)$
$=18.02 \mathrm{~g} / \mathrm{mol}$
solution
$1.75 \mathrm{mel} \mathrm{H}_{2} \mathrm{O} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{\mathrm{mel} \mathrm{H}_{2} \mathrm{O}}=31.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
-2012 Pearson Educalion, nc.

Converting Between Number of Molecules and Mass of a Compound: What is the mass of $4.78 \times 10^{24} \mathrm{NO}_{2}$ molecules?

GIVEN: $\quad 4.78 \times 10^{24} \mathrm{NO}_{2}$ molecules
FIND: $\mathrm{g} \mathrm{NO}_{2}$
SOLUTION MAP

$\frac{1 \mathrm{~mol} \mathrm{NO}_{2}}{6.022 \times 10^{23} \mathrm{NO}_{2}} \quad \frac{46.01 \mathrm{~g} \mathrm{NO}_{2}}{1 \mathrm{~mol} \mathrm{NO}_{2}}$ $6.022 \times 10^{23} \mathrm{NO}_{2} \quad 1 \mathrm{~mol} \mathrm{NO}_{2}$ molecules
© 2012 Pearson Eucation, nc.

Converting Between Number of Molecules and Mass of a Compound: What is the mass of $4.78 \times 10^{24} \mathrm{NO}_{2}$ molecules?

RELATIONSHIPS USED
6.022×10^{23} molecules $=1 \mathrm{~mol}$ (Avogadro's number)
NO_{2} molar mass $=1($ Atomic mass N$)+2($ Atomic mass O$)$

$$
\begin{aligned}
& =14.01+2(16.00) \\
& =46.01 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

SOLUTION
$4.78 \times 10^{24} \mathrm{NO}_{2}$ molecules $\times \frac{1 \mathrm{~mol} \mathrm{NO}_{2}}{6.022 \times 10^{23} \mathrm{NO}_{2}}$
$\overline{6.022 \times 10^{23} \mathrm{NO}_{2} \text { molecules }}$
$\times \frac{46.1 \mathrm{~g} \mathrm{NO}_{2}}{1 \mathrm{mel} \mathrm{NO}_{2}}=365 \mathrm{~g} \mathrm{NO}_{2}$

- 2012 Pearson Educaion, nc.
-

,
\qquad

6.5 Chemical Formulas as Conversion
 Factors

3-Leaf Clover Analogy: How many leaves on 14 clovers?

© 2012 Pearson Education, inc.

6.5 Chemical Formulas as Conversion Factors

- The formula for carbon dioxide, CO_{2}, means there are two O atoms per CO_{2} molecule.
- We write this as:

2 O atoms : $1 \mathrm{CO}_{2}$ molecule

- Similarly,

2 dozen O atoms : 1 dozen CO_{2} molecules

- And:
$2 \mathrm{~mol} \mathrm{O}: 1 \mathrm{~mol} \mathrm{CO}_{2}$
- 2012 Pearson Education, Inc.

The conversion factor comes directly from the chemical formula.

onoman-
2012 Pearson Education, inc. \qquad

\qquad
\qquad
\qquad

Converting Between Grams of a Compound and Grams of a Constituent Element: Find the mass of sodium in 15 g of

NaCl .

- GIVEN: 15 g NaCl
- FIND: g Na
- SOLUTION MAP:

- SOLUTION:

$$
15 \mathrm{~g} \mathrm{NaCl} \times \frac{1 \mathrm{~mol} \mathrm{NaCl}}{58.44 \mathrm{~g} \mathrm{NaCl}} \times \frac{1 \mathrm{~mol} \mathrm{Na}}{1 \mathrm{~mol} \mathrm{NaCl}} \times \frac{22.99 \mathrm{~g} \mathrm{Na}}{1 \mathrm{~mol} \mathrm{Na}}=5.9 \mathrm{~g} \mathrm{Na}
$$

© 2012 Pearson Education, nc.

FIGURE 6.2 Mole relationships
from a chemical formula
$1 \mathrm{~mol} \mathrm{CCl}_{4}: 4 \mathrm{~mol} \mathrm{Cl}$

- The relationships inherent in a chemical formula allow us to convert between moles of the compound and moles of a constituent element (and vice versa).

[^0]
Chemistry in the Environment

 Chlorine in Chlorofluorocarbons- Synthetic compounds known as chlorofluorocarbons (CFCs) are destroying a vital compound called ozone, O_{3}. in Earth's upper atmosphere.
- CFCs are chemically inert molecules used primarily as efrigerants and industrial solvents.
- In the upper atmosphere, sunlight breaks bonds within CFCs, resulting in the release of chlorine atoms.
- The chlorine atoms react with ozone and destroy it by converting it from O_{3} into O_{2}
- The thinning of ozone over populated areas is dangerous because ultraviolet light can harm living things and induce skin cancer in humans.
- Most developed nations banned the production of CFCs on January 1, 1996.
- CFCs still lurk in older refrigerators and air conditioning units and can leak into the atmosphere and destroy ozone.
- 2012 Pearson Education, inc.
- Upper atmospheric ozone is important because it acts as a shield to protect life on Earth from harmful ultraviolet light.
- Antarctic ozone levels in three Septembers from 1979 to 2000. The darkest blue colors indicate the lowest ozone levels.
- The mass percent chlorine changes from one type of chlorofluorocarbon to another.

© 2012 Pearson Eucation, nc.

6.6 Mass Percent Composition of Compounds

- The mass percent composition, or mass percent, of an element
is the element's percentage of the total mass of
the compound.

```
Mass percent of element X Mass of X in a sample of the compound
    Mass of the sample of the compound
```


Finding Mass Percent Composition

- A 0.358 -g sample of chromium reacts with oxygen to form 0.523 g of the metal oxide.
- The mass percent of chromium is:

```
Mass percent Cr =}\frac{\mathrm{ Mass Cr }}{\mathrm{ Mass metal oxide }}\times100
    = 0.358\textrm{g}}0.523\textrm{g}\times100%=68.5
```

- 2012 Pearson Educalion, hnc.

Using Mass Percent Composition as a Conversion Factor

- We can use mass percent composition as a conversion factor between grams of a constituent element and grams of the compound.
- The mass percent composition of sodium in sodium chloride is 39%.
This can be written as:
39 g sodium : 100 g sodium chloride
© 2012 Pearson Education, nc.

Using Mass Percent Composition as a Conversion Factor

- The mass percent composition of sodium in sodium chloride is 39%.
- This can be written in fractional form:

$$
\frac{39 \mathrm{~g} \mathrm{Na}}{100 \mathrm{~g} \mathrm{NaCl}} \text { or } \frac{100 \mathrm{~g} \mathrm{NaCl}}{39 \mathrm{~g} \mathrm{Na}}
$$

These fractions are conversion factors between g Na and g NaCl .
© 2012 Pearson Education, lnc.
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
© 2012 Pearson Education, lnc.

6.7 Mass Percent Composition from a Chemical Formula

- Based on the chemical formula, the mass percent of element X in a compound is: \qquad
Mass percent of element $X=\frac{\text { Mass of element } X \text { in } 1 \text { mol of compound }}{\text { Mass of } 1 \text { mol of compound }} \times 100 \%$
Mass of 1 mol of compound
$4 \times$ Molar mass $\mathrm{Cl}=4(35.45 \mathrm{~g})=141.8 \mathrm{~g}$ \qquad
Molar mass $\mathrm{C}_{2} \mathrm{Cl}_{4} \mathrm{~F}_{2}=2(12.01)+4(35.45)+2(19)$
$=24.02+141.8+38.00$
$=\frac{2038 \mathrm{~g}}{\mathrm{~mol}}$ \qquad
Mass $\% \mathrm{Cl}=\frac{4 \times \text { Molar mass } \mathrm{Cl}^{2}}{\text { Molar mass } \mathrm{C}_{2} \mathrm{Cl}_{4} \mathrm{~F}_{2}} \times 100 \%$
Molar mass $\mathrm{C}_{2} \mathrm{Cl}_{4} \mathrm{~F}_{2}$
$=\frac{141.8 \mathrm{~g}}{203.8 \mathrm{~g}} \times 100 \%$
$=\frac{203.8 \mathrm{~g}}{}$
2012 Pearson Education, Inc.
\qquad
\qquad

Mass Percent Composition
from a Chemical Formula:
Calculate the mass percent of Cl in $\mathrm{C}_{2} \mathrm{Cl}_{4} \mathrm{~F}_{2}$, freon-114. \qquad

© 2012 Pearson Educalion, Inc.

Mass Percent Composition from a Chemical Formula:

Calculate the mass percent of Cl in $\mathrm{C}_{2} \mathrm{Cl}_{4} \mathrm{~F}_{2}$, freon-114.

```
    Mass percent of element X =
```

 \(\xrightarrow{\text { Mass of clement } X \text { in } 1 \text { mol of compound }} \times 100 \%\)
 Mass of 1 mol of compound
 sounton
$4 \times$ Molar mass $\mathrm{Cl}=4(35.45 \mathrm{~g})=141.8 \mathrm{~g}$
Molar mass $\mathrm{C}_{2} \mathrm{Cl}_{4} \mathrm{~F}_{2}=2(12.01)+4(35.45)+2(19)$
$=24.02+141.8+38.00$
$=\frac{2038 \mathrm{~g}}{\mathrm{~mol}}$
Mass \% $\mathrm{Cl}=\frac{4 \times \text { Molar mass } \mathrm{Cl}_{2}}{\text { Molar mass } \mathrm{C}_{2} \mathrm{Cl}_{1} \mathrm{~F}_{2}} \times 100 \%$
Molar mass $\mathrm{C}_{2} \mathrm{Cl}_{4}$
$=\frac{141.8 \mathrm{~g}}{203.8 \mathrm{~g}} \times 100 \%$
$=6958 \%$
© 2012 Pearson Education, inc.

Chemistry and Health Fluoridation of Drinking Water

- Fluoride strengthens tooth enamel, which prevents tooth decay
- Too much fluoride can cause teeth to become brown and spotted, a condition known as dental fluorosis.
- Extremely high levels can lead to skeletal fluorosis.
- The scientific consensus is that, like many minerals, fluoride shows some health benefits at certain levels-about $1-4 \mathrm{mg} /$ day for adults-but can have detrimental effects at higher levels.
- Adults who drink between 1 and 2 L of water per day would receive the beneficial amounts of fluoride from the water.
© 2012 Pearson Education, Inc.

Chemistry and Health
 Fluoridation of Drinking Water

- Fluoride is often added to water as sodium fluoride (NaF).
- What is the mass percent composition of F^{-}in NaF ?
- How many grams of NaF should be added to 1500 L of water to fluoridate it at a level of $1.0 \mathrm{mg} \mathrm{F}^{-} / \mathrm{L}$?
© 2012 Pearson Educaion, nc.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
年

6.8 Calculating Empirical Formulas for Compounds

- Can we calculate a chemical formula from mass percent composition?
- Yes, but it is the empirical formula, not the molecular formula.
- An empirical formula only gives the smallest whole-number ratio of each type of atom in a compound, not the specific number of each type of atom in a molecule.
- The molecular formula is always a whole-number multiple of the empirical formula.
- For example, the molecular formula for hydrogen peroxide is $\mathrm{H}_{2} \mathrm{O}_{2}$ and its empirical formula is HO .

Calculating an Empirical Formula from Experimental Data: Decomposition of Water

- We decompose a sample of water in the laboratory and find that it
produces 3.0 g
of hydrogen and 24 g of oxygen.
- How do we determine an empirical formula
 from these data?
© 2012 Pearson Education, inc.

Calculating an Empirical Formula from Experimental Data: Decomposition of Water to 3.0 g H and 24 g O .

- How many moles of each element formed during the decomposition of water?
- Divide the experimental mass of each element by the molar mass of that element.

> Moles $\mathrm{H}=3.0 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.01 \mathrm{gH}}=3.0 \mathrm{~mol} \mathrm{H}$
> Moles $\mathrm{O}=24 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{gO}}=1.5 \mathrm{~mol} \mathrm{O}$

- There are 3 mol of H for every 1.5 mol of O .

Calculating an Empirical Formula from Experimental Data: Decomposition of Water to 3.0 g H and 24 g O .

- Write a pseudo-formula for water:
$\mathrm{H}_{3} \mathrm{O}_{1.5}$
- To get whole-number subscripts in our formula, divide all the subscripts by the smallest one, in this case, 1.5.

- Our empirical formula for water, which in this case also happens to be the molecular formula, is $\mathrm{H}_{2} \mathrm{O}$.
© 2012 Pearson Education, inc.

Obtaining an Empirical Formula from Experimental Data

1. Write down (or calculate) as given the masses of each element present in a sample of the compound. If you are given mass percent composition, assume a $100-\mathrm{g}$ sample and calculate the masses of each element from the given percentages.
2. Convert each of the masses in Step 1 to moles by using the appropriate molar mass for each element as a conversion factor.
3. Write down a pseudo-formula for the compound, using the moles of each element (from Step 2) as subscripts.
4. Divide all the subscripts in the formula by the smallest subscript.
5. If the subscripts are not whole numbers, multiply all the subscripts by a small whole number (see the following table) to arrive at whole-number subscripts.
© 2012 Pearson Education, hnc.

If, after dividing by the smallest number of moles, the subscripts are not whole numbers, multiply all the subscripts by a small whole number to arrive at wholenumber subscripts.

Multiply by This Number to Get
Whactional
Whole-Number
Subscripts

Multiply by Tis

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Calculating an Empirical Formula from Reaction Data
A 3.24-g sample of titanium reacts with oxygen to form 5.40 g of the metal oxide. What is the empirical formula of the metal oxide?

GIVEN: 3.24 g Ti
5.40 g metal oxide

FIND: empirical formula
You cannot convert mass of metal oxide into moles because you would need its formula, and that is what you are trying to find.

You are given the mass of the initial Ti sample and the mass of its oxide after the sample reacts with oxygen. The difference is the mass of oxygen that combined with the titanium.
© 2012 Pearson Education, Inc.

Calculating an Empirical Formula from Reaction Data

- To find the mass of oxygen, subtract the mass of titanium from the mass of the "metal oxide."

The difference is the mass of oxygen.
Mass Ti $=3.24 \mathrm{~g} \mathrm{Ti}$
Mass $\mathrm{O}=$ Mass oxide - Mass titanium $=5.40 \mathrm{~g} \mathrm{Ti} \& \mathrm{O}-3.24 \mathrm{~g} \mathrm{Ti}$ $=2.16 \mathrm{~g} \mathrm{O}$

- Now you can convert the mass of each element to moles.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

6.9 Calculating Molecular Formulas for Compounds: Fructose

- Find the molecular formula for fructose (a sugar found in fruit) from its empirical formula, $\mathrm{CH}_{2} \mathrm{O}$, and its molar mass, $180.2 \mathrm{~g} / \mathrm{mol}$.

- The molecular formula is a whole-number multiple of $\mathrm{CH}_{2} \mathrm{O}$.

6.9 Calculating Molecular Formulas for Compounds: Fructose

- For fructose, the empirical formula molar

Empirical formula molar mass $=1(12.01)+2(1.01)+16.00=30.03 \mathrm{~g} / \mathrm{mol}$

- Therefore, n is: ${ }^{n=\frac{180.2 \mathrm{~g} / \mathrm{mol}}{30.03 \mathrm{~g} / \mathrm{mol}}=6}$
- We can then use this value of n to find the moler ilinr frum in

Molecular formula $=\mathrm{CH}_{2} \mathrm{O} \times 6=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
© 2012 Pearson Education, nc.

6.9 Calculating Molecular Formulas for Compounds

- Use the molar mass (which is given) and the empirical formula molar mass (which you can calculate based on the empirical formula) to determine n (the integer by which you must multiply the empirical formula to get the molecular formula).
- Multiply the subscripts in the empirical formula by n to arrive at the molecular formula. \qquad
\qquad

Chapter 6 in Review

The mole concept:

- The mole is a specific number (6.022×10^{23}) that allows us to easily count atoms or molecules by weighing them.
- One mole of any element has a mass equivalent to its atomic mass in grams.
- One mole of any compound has a mass equivalent to its formula mass in grams.
- The mass of 1 mol of an element or compound is its molar mass.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter 6 in Review

Chemical formulas and chemical composition:

- Chemical formulas indicate the relative number of \qquad each kind of element in a compound.
- These numbers are based on atoms or moles.
- By using molar masses, the information in a chemical formula can be used to determine the relative masses of each kind of element in a compound.
- The total mass of a sample of a compound can be related to the masses of the constituent elements contained in the compound.
© 2012 Pearson Education, nc.

Chapter 6 in Review

Empirical and molecular formulas from laboratory data:

- We can refer to the relative masses of each kind of element within a compound to determine the empirical formula of the compound.
- If the chemist also knows the molar mass of the compound, he or she can also determine its molecular formula. \qquad

Chemical Skills

- Converting between moles and number of atoms
- Converting between grams and moles
- Converting between grams and number of atoms or molecules
- Converting between moles of a compound and moles of a constituent element
- Converting between grams of a compound and grams of a constituent element
- Using mass percent composition as a conversion factor
- Determining mass percent composition from a chemical formula
- Determining an empirical formula from experimental data
- Calculating a molecular formula from an empirical formula and molar mass ©2012 Peasson Education, 1ne.

[^0]: © 2012 Pearson Education, no.

